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Abstract

Two effective thermal conductivity models for nanofluids were compared in detail, where the new KKL (Koo–Kleinstreuer–Li)
model, based on Brownian motion induced micro-mixing, achieved good agreements with the currently available experimental data sets.
Employing the commercial Navier–Stokes solver CFX-10 (Ansys Inc., Canonsburg, PA) and user-supplied pre- and post-processing soft-
ware, the thermal performance of nanofluid flow in a trapezoidal microchannel was analyzed using pure water as well as a nanofluid, i.e.,
CuO–water, with volume fractions of 1% and 4% CuO-particles with dp = 28.6 nm. The results show that nanofluids do measurably
enhance the thermal performance of microchannel mixture flow with a small increase in pumping power. Specifically, the thermal per-
formance increases with volume fraction; but, the extra pressure drop, or pumping power, will somewhat decrease the beneficial effects.
Microchannel heat sinks with nanofluids are expected to be good candidates for the next generation of cooling devices.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Microscale cooling devices, such as microchannel heat
sinks, are increasingly important in current and future heat
removal applications. Specifically, a coolant flowing
through a large number of parallel, micromachined or
etched conduits with the purpose to remove heat from and
generate uniform temperature distributions in micro-elec-
tro-mechanical systems, integrated circuit boards, laser-
diode arrays, high-energy mirrors and other compact prod-
ucts with high transient thermal loads. Key is the very large
heat transfer surface-to-volume ratio of the devices, leading
to high compactness and effectiveness of heat removal. Com-
plementary to that is the use of high thermal performance
coolants. Most exciting are new coolants consisting of a
combination of a low-volume fraction of nanoparticles
(e.g., metals, metal-oxides, or carbon-based material) with
a suitable carrier fluid, such as distilled water, engine oil, eth-
0142-727X/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijheatfluidflow.2008.01.005

* Corresponding author. Tel.: +1 9195155261; fax: +1 9195157968.
E-mail address: ck@eos.ncsu.edu (C. Kleinstreuer).
ylene glycol. As first demonstrated in 1995 at Argonne
National Laboratory, those dilute liquid-particle mixtures,
called nanofluids, have exhibited thermal conductivity val-
ues 20–150% higher then the ones of the base fluids (Choi,
1995; Chopkar et al., 2007). Over the last seven years numer-
ous experimental and a few theoretical papers appeared,
providing nanofluid property measurements and models
describing the underlying physics of enhanced thermal con-
ductivities for different nanoparticle-and-liquid pairings.

The effective thermal conductivity (keff) of any nanofluid
depends mainly on the nanoparticle volume fraction, con-
ductivity and diameter, as well as the carrier-fluid temper-
ature and conductivity. Fig. 1 provides a glimpse of the
most recent measurements for keff vs. u (the volume frac-
tion), considering different temperatures, types of mixtures,
and nanoparticle diameters. Metal-oxides (e.g., Al2O3,
CuO, TiO2, etc.) were first used in static nanofluid studies
(see Masuda et al., 1993; Lee et al., 1999; Zhou and Wang,
2002; Xie et al., 2002; and Chang et al., 2005; among oth-
ers). However, nanofluids with metals (e.g., Cu, Fe, Au,
etc.) or carbon-based materials generated higher keff values.

mailto:ck@eos.ncsu.edu


Nomenclature

Aaf aspect factor (=H/Wb)
Aar aspect ratio (=Wb/Wt)
Ac area of the channel cross section
Abottom area of the heated substrate wall
C constant
Cf friction coefficient
cp specific heat capacity
d diameter
Dh hydraulic diameter
H channel height
k thermal conductivity
L channel length
m constant
Nu Nusselt number
p pressure
P pumping power
Pr Prandtl number
q00 uniform heat flux
Q volumetric flow rate
Rb interfacial thermal resistance
Re Reynolds number
T temperature
u,v velocity

VN root-mean-square velocity
Wb channel bottom width
Wt channel top width

Greek Letters

a nanoparticle Biot number
u volume fraction
jb Boltzmann constant
l dynamic viscosity
m kinematic viscosity
h thermal resistance
q density

Subscripts

ave average
eff effective
f base fluid
in inlet
int interface
m mean
out outlet
p particle
w wall
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For example, Eastman et al. (2001) observed that a nano-
fluid consisting of 10 nm copper nanoparticles dispersed
in ethylene glycol (EG) had a much higher effective thermal
conductivity than either pure EG or EG containing the
same volume fraction of dispersed metal-oxide nanoparti-
cles. Choi et al. (2003) measured a 300% enhancement of
thermal conductivity with 3 wt% loading of single-wall car-
bon nanotubes. The temperature dependence of keff for the
polymer composites was also demonstrated in their exper-
iments. In order to avoid aggregates, these carbon nano-
tubes have to be surface-treated, or, say, nitric acid has
to be added to the mixture. In general, nanofluids over-
come the drawbacks of liquids with large particles, i.e.,
rapid particle sedimentation, clogged flow channels, eroded
conduits, and elevated pressure drops.

Although the experimental results have demonstrated a
significant potential for thermal conductivity enhancement,
the determination of the underlying physics is still in a pri-
mary stage, complicated by the fact that the available
experimental data from different research group may vary
significantly (see Koo and Kleinstreuer, 2003; among oth-
ers). Clearly, nanoparticle volume fraction, physical char-
acteristics and fluid type are important factors, but
insufficient to explain the anomalous increase in thermal
performance of nanofluids. Other reasons proposed include
a very high particle-liquid interface conductivity due to
molecular-size layering of the carrier fluid around the par-
ticles as well as Brownian motion of the nanoparticles caus-
ing micro-mixing. Additional mechanisms include the effect
of nanoparticle clustering, the nature of heat transfer inside
the particles, the interaction and collision among particles,
thermal waves via hyperbolic heat conduction, and nano-
particle dispersion. Other nanoparticle-motion mecha-
nisms, such as thermophoresis and osmophoresis, are
negligible (Koo and Kleinstreuer, 2005a,b). Based on a
molecular dynamics simulation, Sarkar and Selvam
(2007) concluded that the thermal transport enhancement
of nanofluids was mostly due to the increased movement
of liquid atoms in the presence of nanoparticles. However,
some researchers questioned the role of Brownian motion
hydrodynamics for the unusual thermal effect of nanofluid
(see Evans et al., 2006; Vladkov and Barrat, 2006; among
others) as well as the actual keff-increase as reported in
experimental papers (see Venerus et al., 2006; Putnam
et al., 2006; Beck et al., 2007; among others).

Nevertheless, the hypothesis that Brownian motion of the
nanoparticles causes micro-mixing has recently become
more and more popular (see Koo and Kleinstreuer, 2004,
2005a,b; Jang and Choi, 2004, 2006, 2007; Prasher et al.,
2006; among others). In a comparison study where Kle-
instreuer and Li (in press) discussed the effective thermal con-
ductivity theory of Jang and Choi (2004, 2006, 2007), it was
found that their model cannot consistently match measured
thermal performances of nanofluids, especially when the
fluid temperature changes. Thus, to predict the thermal per-
formance of nanofluids in microscale cooling devices and
other thermal micro-systems, the influence of temperature
on the effective thermal conductivity has to be considered.
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Fig. 1. Sample of experimental evidence for elevated keff/kf of nanofluids.

J. Li, C. Kleinstreuer / Int. J. Heat and Fluid Flow 29 (2008) 1221–1232 1223
2. Theory and analysis

Of interest is the use of a most suitable keff model for the
computational analysis of nanofluid flow in a representa-
tive microchannel of a typical cooling device. Hence, first
two competitive keff models are compared in light of bench-
mark experimental data sets. Then, pure water and nano-
fluid flow with heat transfer is investigated.
2.1. Temperature-dependent keff models for nanofluids

One possible keff correlation proposed by Prasher et al.
(2006) is the multi-sphere Brownian model (MSBM) which
can be described as follows. After having analyzed several
possible thermal conduction mechanisms and associated
models, Prasher et al. (2006) confirmed that the localized
convection in the liquid due to Brownian movement of
the particles is primarily responsible for the observed
enhancement of the effective thermal conductivity of nano-
fluids. They captured random dispersions with a ‘‘Brown-
ian-motion Reynolds number” based on the root-mean-
square velocity of a Brownian particle as part of a modified
Maxwell-Garnett thermal conductivity model (Nan et al.,
1997), which also considers the influence of interfacial ther-
mal resistance, Rb, between nanoparticles and different flu-
ids. The description of multi-sphere convective interaction
was borrowed from fluidized bed heat transfer (Brodkey
et al., 1991). Combining these phenomena, the MSBM
was proposed in the form:
keff

kf

¼ ð1þ CRemPr0:333uÞ

� ½kpð1þ 2aÞ þ 2km� þ 2u½kpð1� 2aÞ � km�
½kpð1þ 2aÞ þ 2km� � u½kpð1� aÞ � km�

� �
ð1Þ

where Re = VNdp/m, VN is the root-mean-square velocity,
m is the kinematic viscosity of the liquid, a = 2Rbkm/dp is
the nanoparticle Biot number, Rb is the selective interfacial
thermal resistance, km is the medium thermal conductivity,
and C and m are adjustable constants; while C is indepen-
dent of the fluid type, m depends on the fluid. For example,
comparing the MSBM with data from water-based nanofl-
uids and assuming Rb to be 0.77 � 10�8 km2 W�1, they cal-
culated C = 40,000 and m = 2.5 ± 0.15. Ethylene glycol
(EG) and engine oil were also matched well when employ-
ing appropriate Rb and m values. As shown in Fig. 2, the
MSBM model generates a good agreement with some of
the recent Al2O3–water experimental data sets when
employing a decent m value. However, the MSBM model
can not predict the thermal conductivity enhancement
trend for the experimental results of Li and Peterson
(2007). Interestingly enough, the experimental data of
Chon et al. (2005) also indicated a different trend while
employing the same nanofluids, i.e., the same particle
diameter and volume fraction. The MSBM comparisons
were also not convincing when the particle was too small
(611 nm) or too large (P125 nm).

According to the postulate that submicron particle
Brownian motion has explicitly a significant impact on
the effective thermal conductivity, Koo and Kleinstreuer
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Fig. 2. Comparison of Prasher et al. (2006) thermal conductivity enhancement model (MSBM) with experimental data for Al2O3–water nanofluids at
different temperatures.
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(2004) proposed that keff is composed of the nanoparticle’s
conventional static part and a Brownian motion part. Their
thermal conductivity model takes into account the effects
of particle size, particle volume fraction and temperature
dependence as well as type of nanoparticle and base fluid
combinations. Specially,

keff ¼ kstatic þ kBrownian ð2Þ

where the static part is Maxwell’s model and the dynamic
part was developed based on kinetic theory together with
Stokes’ flow of micro-scale convective heat transfer, i.e.,
micro-mixing. Hence,

kstatic

kf

¼ 1þ
3

kp

kf
� 1

� �
u

kp

kf
þ 2

� �
� kp

kf
� 1

� �
u

ð3Þ

and

kBrownian ¼ 5� 104buqf cp;f

ffiffiffiffiffiffiffiffiffiffi
jbT
qpdp

s
f ðT ;uÞ ð4Þ

The functions b and f, to be determined semi-empiri-
cally, were introduced to encapsulate the thermo-hydrody-
namic interactions among micro-scale fluid parcels and the
nanoparticle interactions capturing any temperature
dependence (Koo and Kleinstreuer, 2005a,b). What is miss-
ing in Eq. (4) is the interfacial thermal resistance Rb

between nanoparticles and base fluids (see Prasher et al.,
2006; Jang and Choi, 2007; Xuan et al., 2006; Xue,
2006). The thermal interfacial resistance (also called Kap-
itza resistance) is believed to exist in the adjacent layers
of the two different materials, i.e., the thin barrier layer
plays a key role in weakening the effective thermal conduc-
tivity of the nanoparticles. For example, Wilson et al.
(2002) reported that the magnitude of Rb between different
nanoparticles and base fluids ranges from about 0.77 �
10�8 km2 W�1 to approximately 20 � 10�8 km2 W�1.
More recently, Huxtable et al. (2003) showed that the inter-
face thermal resistance across a carbon nanotube and base
fluid is 8.33 � 10�8 km2 W�1. Choosing an average value
of Rb = 4 � 10�8 km2 W�1, the original K & K model
was enhanced. In the static part, an effective nanoparticle
thermal conductivity was used to substitute the isolated
nanoparticle thermal conductivity, i.e.,

Rb þ
dp

kp

¼ dp

kp;eff

ð5Þ

The functions b and f in Eq. (4) were combined to a new g-
function which considers the influence of multi-particle
interaction which depends on particle diameter, tempera-
ture and volume fraction. For different base fluids and dif-
ferent nanoparticles, the g-function should differ; presently,
only water-based nanofluids were considered because of
the limits in available experimental data sets. For example,
for Al2O3–water and CuO–water nanofluids, the nonlinear
g-function generated r2 values of 96% and 98%, respec-
tively, using benchmark experimental data sets (Li, 2008)

Fig. 3 depicts a comparison of the new Koo–Kle-
instreuer–Li (KKL) model with experimental data for
Al2O3–water nanofluids at different temperatures. Similar



A

A

A

B

B

B

C

C

C

20 30 40 50 60 70
1

1.2

1.4

1.6

Das et.al.(2003) 38.4nm Al O Water =1%
KKL model for 38.4nm Al O Water =1%
Das et.al.(2003) 38.4nm Al O Water =4%
KKL model for 38.4nm Al O Water =4%
Das et.al.(2003) 38.4nm Al O Water =2%
KKL model for 38.4nm Al O Water =2%
Das et.al.(2003) 38.4nm Al O Water =3%
KKL model for 38.4nm Al O Water =3%
Li & Peterson(2007) 36nm Al O Water =2%
KKL model for 36nm Al O Water =2%
Li & Peterson(2007) 36nm Al O Water =4%
KKL model for 36nm Al O Water =4%
Li & Peterson(2007) 36nm Al O3 Water =6%
KKL model for 36nm Al O Water =6%
Li & Peterson(2007) 47nm Al O Water =2%
KKL model for 47nm Al O Water =2%
Li & Peterson(2007) 47nm Al O Water =6%
KKL model for 47nm Al O Water =6%
Chon et.al (2005) 47nm Al O Water =1%
KKL model for 47nm Al O Water =1%
Chon et.al (2005) 47nm Al O Water =4%
Li & Peterson(2007) 47nm Al O Water =4%
KKL model for 47nm Al O Water =4%
Murshed et.al (2007) 80nm Al O Water =1%
KKL model for 80nm Al O Water =1%

A

B

C

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ

ϕ
ϕ

ϕ

Temperature (oC)

k ef
f/k

f

Fig. 3. Comparison of KKL model with experimental data for Al2O3–water nanofluids at different temperatures.

B

B

B

B

A

A
A

A

Temperature (oC)

k ef
f/k

f

25 30 35 40 45 50

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Das et.al.(2003) 28.6nm CuO Water =1%
Prasher et al.(2006) MSBM model for 28.6nm CuO Water =1%,m=2.31
Das et.al.(2003) 28.6nm CuO Water =4%
Prasher et al.(2006) MSBM model for 28.6nm CuO Water =4%,m=2.0
Li & Peterson(2006) 29nm CuO Water =2%
Prasher et al.(2006) MSBM model for 29nm CuO Water =2%,m=1.975
Li & Peterson(2006) 29nm CuO Water =4%
Prasher et al.(2006) MSBM model for 29nm CuO Water =4%,m=2.152
Li & Peterson(2006) 29nm CuO Water =6%
Prasher et al.(2006) MSBM model for 29nm CuO Water =6%,m=2.08
Prasher et al.(2006) MSBM model for 29nm CuO Water =4%,m=2.0
KKL model for 28.6nm CuO Water =1%
KKL model for 28.6nm CuO Water =4%
KKL model for 29nm CuO Water =2%
KKL model for 29nm CuO Water =4%
KKL model for 29nm CuO Water =6%

B

A
ϕ
ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ

Fig. 4. Comparison of KKL model, MSMB model with experimental data for CuO–water nanofluids at different temperatures.

J. Li, C. Kleinstreuer / Int. J. Heat and Fluid Flow 29 (2008) 1221–1232 1225
to the MSBM model, the KKL model shows a very good
agreement with most of the recent experimental data sets.
In Fig. 4, the KKL and MSBM models are compared with
experimental data for CuO–water nanofluids at different
temperatures. For the experimental data of Das et al.
(2003), the KKL model provides a better matching than
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the MSBM model, while the opposite is the case for the
experimental data of Li and Peterson (2006). It must be
mentioned that the m-value has an important influence
on the MSBM model. If the value for the Reynolds number
exponent is taken to be 2 for the 29 nm 4% CuO–water
nanofluids, i.e., the same as for the 28.6 nm 4% CuO–water
nanofluids, the predicted keff numbers generated by the
MSBM model are far larger than the experiment values.

Both the Koo–Kleinstreuer–Li model and the MSBM
model showed good agreements with most experimental
results. The KKL model encapsulates micro-mixing due
to random nanoparticle motion based on first principles.
In contrast, the models by Jang and Choi (2007) and Pra-
sher et al. (2006) contain Brownian motion effects implic-
itly in terms of ‘‘Brownian Reynolds numbers”. Still, in
the KKL theory, the complexities caused by multi-sphere
interactions and strong temperature changes are lumped
into a functional which could be detailed and expanded
as more experimental evidence appears. The MSMB model
employs adjustable parameters as well as factors C and m

for data matching.
2.2. Pure water flow and nanofluid flow with heat transfer in

a trapezoidal microchannel

Considering the strong temperature-dependent charac-
teristics of the nanofluid thermal performance (see Figs.
2–4) and possibly large temperature differences in micro-
heat sinks, temperature dependent physical properties of
water and the new KKL model for the thermal conductiv-
ity of nanofluids were selected. Employing the commercial
Navier–Stokes solver CFX-10 (Ansys Inc., Canonsburg,
PA) and user-supplied pre- and post-processing software,
pure water as well as CuO–water mixtures of different
CuO-volume fractions were used as the working fluid.

Specifically, Fig. 5a depicts a representative microchan-
nel as well as the associated computational mesh. The top
width Wt, bottom width Wb and depth of the channel H

are 500 lm, 358.4 lm and 100 lm, respectively (Chein
Fig. 5. (a) Typical microchannel heat sink (M
and Chuang, 2005). The base angle, which is the angle
between the channel side wall and bottom wall, is 54.7�.
The length of the channel L is 27 mm. The heights of the
cover and base substrate are both Hc = 500 lm. A constant
heat flux of q00 = 431,466 W/m2 (10 W for the unit element)
from below and adiabatic conditions at the other bound-
aries were assumed (Li et al., 2004). For comparison, first
a smooth channel with pure de-ionized water as the work-
ing fluid was considered. The hydraulic diameter for the
present case is:

Dh ¼
4� 0:5� ðW t þ W bÞ � H
W t þ W b þ 2� H= sin h

¼ 155:6 lm ð6Þ

Other important geometric channel parameters are the as-
pect ratio as well as the aspect factor, defined respectively
as

Aar ¼ W b=W t and Aaf ¼ H=W b ð7a; bÞ

The fluid material properties (density, thermal conductiv-
ity, dynamic viscosity, specific thermal capacity at constant
pressure) were temperature dependent. For steady-state
operations, the continuum mechanics equations are:

r � ½qfðT Þ~u� ¼ 0 ð8Þ
qfð~u � r~uÞ ¼ �rp þr � ðlfr~uÞ ð9Þ

and

qfcp;fð~u � rT Þ ¼ kfr2T þ lfU ð10Þ

where

U ¼ oui

oxj
þ ouj

oxi

� �
oui

oxj
ð11Þ

Here ~u is the velocity vector; and U is the viscous dissipa-
tion function. As hydraulic boundary conditions, a uni-
form velocity is applied at the channel inlet, i.e., ux = 0,
uy = 0, uz = Uin, ux, uy, and uz are the velocity vector quan-
tities in x, y, and z direction. The outlet pressure is the sta-
tic pressure, i.e., pout = 0. The no-slip boundary condition
was enforced at all solid walls. The thermal boundary con-
CHS) element and (b) finite volume mesh.
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dition at the bottom is q00 = C; adiabatic boundary condi-
tions are applied at all other sides of the walls, oT

on ¼ 0;
and T = Tin in the fluid inlet region.
2.2.1. Pure water flow

For comparison purposes, a steady global energy bal-
ance based on the temperature difference between the chan-
nel inlet and outlet was performed, i.e.,

qf umcpAcðT out � T inÞ ¼ q00 � Abottom ð12Þ

Fig. 6 depicts the simulated water temperature rise between
the channel inlet and outlet as a function of inlet Reynolds
number and the theoretical values predicted by Eq. (12). In
both of the two situations (scenarios, i.e., constant and
temperature-dependent water properties), the simulation
results match the energy balance predictions. The tempera-
ture difference between inlet and outlet are slightly higher
when the water properties are dependent on the tempera-
ture especially for small Reynolds numbers. The reason is
that water has a smaller thermal capacity at elevated fluid
temperatures.

For noncircular conduits the channel aspect ratio or
aspect factor (see Eq. (7a,b)) has a profound influence on
the friction coefficient (or Poiseuille number):

Cf ¼ f Re ¼ Dp � D2
h

2lfuL
ð13Þ

which has a constant value of 16 for circular conduits. As
shown in Fig. 7, the computed friction factor shows a good
Re

ΔT
(K

)

500 1000

10

20

30

40

Energy balance pred
Simulation result fo
Energy balance pred
Simulation result fo

Fig. 6. Model validations: temperature
agreement with the empirical correlation of Wu and Cheng
(2003) for fully develop flow, i.e.,

f Re ¼ 11:43þ 0:80 expð2:67W b=W tÞ ð14Þ

For channel flow, the friction factor should be constant in
the laminar flow regime. Indeed, the simulation result is al-
most parallel to the experimental empirical value within an
error less than 3%. The simulation results for the tempera-
ture-dependent case are also within a 3% error margin.
When the Reynolds number is larger than 1000, the theo-
retical friction factor hardly changes, i.e., the temperature
differences in the fluid are small because of the relatively
high mean velocities.
2.2.2. Nanofluid flow with heat transfer

In order to investigate the heat transfer characteristics of
nanofluid flow in the trapezoidal microchannel, a CuO–
water combination was used as the working fluid. Clearly,
the thermal fluid properties of the nanofluid have to be
updated. Thus, in the governing Eqs. (9) and (10), the fol-
lowing expressions were introduced, replacing the previous
lf and kf parameters. Typically, for a very dilute suspen-
sion, the effective viscosity, density and specific heat capac-
ity have the following forms (Xuan and Roetzel, 2000):

leff ¼ lf

1

ð1� uÞ2:5
ð15Þ

qeff ¼ uqp þ ð1� uÞqf ð16Þ
ðqcpÞeff ¼ uðqcpÞp þ ð1� uÞðqcpÞf ð17Þ
1500 2000

iction for constant fluid properties
r constant fluid properties
iction for temperature dependent fluid properties

r temperature dependent fluid properties

rise from heat sink inlet to outlet.
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here qeff is the nanofluid density, leff is the nanofluid viscos-
ity, (qcp)eff is the nanofluid specific heat capacity. For the
effective thermal conductivity, the new KKL model (see
Section 2.1) is employed.

The calculated fully-developed pressure gradient results
for pure water and the CuO–water mixture at different vol-
ume fractions as a function of Reynolds number are given
in Fig. 8. For the three cases, the Reynolds numbers differ
even for same fluid entrance velocity, because of the
different densities and dynamic viscosities. As expected,
the trend shows a minor pressure gradient increase for
the same Reynolds numbers when employing nanofluids.
Specifically, the pressure gradient enhancement is less than
2% and 5% for CuO–water nanofluid with a volume frac-
tion of 1% and 4%, respectively. Fig. 9 shows the pressure
gradient increase at different mean velocities. The enhance-
ment is less than 5% for CuO–water with a volume fraction
of 1%, while for CuO–water with a volume fraction of 4%
the increase is up to 15%.

Pumping power is needed to drive the working fluid in
microchannels, which is defined as the product of the pres-
sure drop across the channel (Dp) and volumetric flow rate
(Q), i.e.,

P ¼ Dp � Q ð18Þ

As is shown in Fig. 10, there is not much difference in
pressure drops when using pure water and nanofluids.
There is an average 2% increase for CuO–water with a
1% volume fraction and an average 8% enhancement for
the CuO–water with a 4% volume fraction. Thus, it does
not need require additional pumping power to drive nano-
fluid flow, especially for lower particle volume fractions.
Chein and Chuang (2005) showed similar phenomena
based on theoretical models and experimental correlations.

In order to investigate heat transfer enhancement for
nanofluids, the average Nusselt numbers for different vol-
ume fractions were compared. The average Nusselt number
is defined as

Nuave ¼
q00 � Dh

ðT w;ave � T f ;aveÞkf

ð19Þ

where Tw,ave is the surface-averaged temperature at the
fluid–solid interface of area Aint, Tf,ave is the volume-
averaged temperature of the fluid field. Fig. 11 compares
the average Nusselt number for pure water flow and
CuO–water nanofluid flow with different volume fractions.
It demonstrates that nanofluids can improve the thermal
performance of microchannels: (i) the larger the volume
fraction of nanoparticles, the higher is the thermal perfor-
mance; (ii) a volume fraction of 1% CuO–water nanofluid
shows an average 15% enhancement of thermal perfor-
mance, when the volume fraction increases to 4%, there is
a 20% increase over that of pure water.

In order to compare the thermal performance of nanofl-
uids, the thermal resistance is employed:

h ¼ T w;ave � T in

q
ð20Þ

where Tin is the fluid inlet temperature and q is the heat
added to the microchannel. As shown in Fig. 12, the thermal
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performance is enhanced when employing nanofluids. The
average enhancement of thermal performance for CuO–
water with a volume fraction of 1% is about 11% and the
increase is about 15% when the volume fraction is 4%.
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As depicted from Figs. 8, 10–12, nanofluids lower the
thermal resistance and hence measurably enhance the per-
formance of microchannels with little pumping power
added. In summary, microchannel heat sinks with nano-
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fluids as coolant will be good candidates for the next gen-
eration of cooling devices.
3. Conclusions

Two effective thermal conductivity models for nanofluids
were compared in detail, where the new KKL (Koo–Kle-
instreuer–Li) model, based on Brownian-motion induced
micro-mixing, achieved good agreements with the currently
available experimental data sets. Employing the commercial
Navier–Stokes solver CFX-10 (Ansys Inc., Canonsburg,
PA) and user-supplied pre- and post-processing software,
the thermal performance of nanofluid flow in a trapezoidal
microchannel was analyzed using pure water and CuO–
water with volume fractions of 1% and 4%. The results show
that nanofluids do measurably enhance the thermal perfor-
mance of microchannel mixture flow with a small increase
in pumping power. The thermal performance increases with
volume fraction; but, the extra pressure drop, or pumping
power, will somewhat decrease the beneficial effects. Micro-
channel heat sinks with nanofluids are expected to be good
candidates for the next generation of cooling devices.
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